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For the zero-temperature Glauber dynamics of  the q-state Potts model, the 
fraction r(q, t) of spins which never flip up to time t decays like a power law 
r(q, t) ~ l - O I q l  when the initial condition is random. By mapping the problem 
onto an exactly soluble one-species coagulation model (A + A--* A) or alter- 
natively by transforming the problem into a free-fermion model, we obtain the 
exact expression of O(q) for all values of q. The exponent O(q) is in general 
irrational, 0(3)=0.53795082 .... 0(4)=0.63151575 .... . . . .  with the exception of 
q = 2 and q = Go, for which 0(2) = 3/8 and 0( c~ ) = 1. 

KEY WORDS:  Glauber  dynamics; coarsening; free fermions; Toeplitz deter- 
minant; Potts model; reaction-diffusion problems. 

1. I N T R O D U C T I O N  

One of the simplest systems for which coarsening f~ associated to phase 
ordering can be studied is the one-dimensional Ising or q-state Potts model 
evolving according to zero-temperature Glauber dynamics/21 At zero tem- 
perature, the evolution tends to align all the spins. Consequently, for a 
random initial condition, one observes domains of parallel spins growing 
with time. 

One w/~y to implement the zero-temperature dynamics of these one- 
dimensional systems is to update every spin during each infinitesimal time 
interval At according to the following dynamics: 

J Laboratoire de Physique Statistique, ENS, F-75231 Paris Cedex 05, France. 
-" Service de Physique Th6orique, CE Saclay, F-91191 Gif sur Yvette, France. 

763 

0022-4715/96/1200-0763509.50/0 (r 1996 Plenum Publishing Corporation 



764 Derrida et  al.  

Si(t + At) = S~(t) with probability 1 - 2 At 

= S,_ ~(t) with probability At (1) 

=S i+  t(t) with probability At 

Therefore, updating a spin in one dimension consists in choosing for its 
new value the value of one of its two neighbors at random. When the value 
SAt) of the spin i at time t is traced back in time, a random walk is 
obtained which connects site i through various ancestors to a particular 
site i0 in the initial configuration, so that Si( t )= &,,(0). The dynamics is 
nothing but the dynamics of a voter model ~sl and this makes many proper- 
ties computable via random walk methods. 

For example, the equal-time correlation function @,(i, j ) =  (fisi~,~,sj~,~) 
evolves according to 

dq~,( i, j) 
dt 

- -  - ~ , ( i +  1, j) + ~ , ( i -  1 , j ) + ~ , ( i , j +  1) 

+ ~ , ( i , j -  1 ) -  4~,(i, j )  (2) 

For a random initial condition, q s o ( i , j ) = l / q + [ ( q - 1 ) / q  ] fii., and it is 
easy to verify that 

q~,(i, j) = 1 - q -  1 C,(i, j) (3) 
q 

where C,(i, j) is the probability that two random walkers starting at sites 
i and j at t = 0  do not meet up to time t [according to (2), during each 
infinitesimal time interval At, each walker hops to its right with probability 
At, to its left with probability At, and does not move with probability 
1 - 2 A t ] .  Indeed, C,(i,j) satisfies the same equation (2) as q~, with 
Co(i, j ) =  1-6 i . j .  The solution is, for i < j, 

1 I" sin O s i n [ ( j - i )  O] e_41 , . . . .  re,dO 
C,(i,j)=~-~ -~ 1 - c o s 0  

For large t, C,(i, j) takes a scaling form 

~ 1____ fL,-.:,/,A _,,::~ au C, ( i , j ) -  x/ /~  jo e (4) 

and one finds that the size of the domains increases like t ~/'- as expected 
when the order parameter is not conserved. One recovers in that way the 
exact scaling form (3), (4) of the equal-time pair correlation function. ~4-8~ 
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Random walks can also be used to calculate the autocorrelation 
function. From the definition of the dynamics (1), one can relate the 
autocorrelation to the probability that a random walk returns to its 
starting point at time t and show that 

1 q - 1  1 dOe-Z,(i . . . .  m..~q - I  1 
(6s,,).s,(ol) q q 2z~ _~ - q 2x/,- ~ (5) 

and this gives the exponent characterizing the decay of the autocorrelation 
function.( 9 -~  

From these two well-known facts ~s~ (s) one could believe that all the 
exponents appearing in the zero-temperature growth of domains in one 
dimension are simple and well understood. However, by studying the 
fraction of spins r(q, t) which have never flipped up to time t, it was found, 
first numerically c~2-]4) and then analytically, ~5~ that this fraction r(q, t) of 
persistent spins decreases with time like a power law 

r(q, t) ~ t -~ (6) 

where the exponent O(q) has a complicated q dependence. In an earlier 
letter I~s~ we gave for the 1D Potts model the exact expression of O(q), 

1 2 I 2 - q  2 
c o s  (7) 

which agrees with all the previous numerical estimates based on Monte 
Carlo simulations and finite-size scalingJ'2-~4~ Our derivation of (7) in ref. 15 
was based on a mapping onto a reaction-diffusion model (A + A --, A) with 
a fixed source, the steady state of which was solved exactly for finite 
lattices. The expression of O(q) was then obtained from a finite-size scaling 
argument. 

Here we work directly on the infinite system and we obtain the exact 
expression of r(q, t) valid at all times. The main advantage is that we avoid 
using finite-size scaling and the asymptotics become easier to analyze. 

The paper is organized as follows. In Section 2, we recall the relation 
between the coarsening problem and the reaction-diffusion problem, c16-2~ 
In Section 3 we calculate for the semiinfinite chain the probability 
Au(r~, r2 ..... ru) that the spin at the origin takes the same value at time 
z~, r2 ..... r u. In Section 4, we take the continuous limit of the expression 
AN(Z" 1 ..... Z'N) and obtain the exact expression of the fraction r(q, t) of spins 
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which never flip up to time t for an infinite chain. In Section 5, we extract 
the exponent O(q) from the asymptotic behavior of r(q, t). In Section 6, we 
recall the results of our previous work ~'5) for the finite geometry and we 
show in Section 7 how they can be recovered by a fermionic approach. 

2. RELATION TO A R E A C T I O N - D I F F U S I O N  M O D E L  

In the introduction we already mentioned the close connection 
between the zero-temperature dynamics of the Potts model and random 
walks. What  (1) tells us is that to know the value of a spin S~(t) at time 
t, one needs to look at a random walker starting at time 0 from site i [ this 
random walker has the hopping rates given by (1)]. If  this random walker 
is on site i0 at time t, then Si(t)=Sio(O). 

It is important  to notice that when we relate the evolution of the spins 
and of the random walkers, we have to reverse the arrow of time. 

To compare the value of two spins S~(t) and Sj(t) at time t, one needs 
to consider two random walkers, one starting at site i and the other one 
at site j. After time t, either the two walkers have merged into one walker 
which ends up on site k o at time t and consequently S~(t)= Sj(t)= S~o(0), 
or the two walkers have not met and end up at time t on sites i 0 and J0 and 
consequently Si(t)= S~0(0) and Sj(t)= Sj0(0). This simple connection with 
coalescing random walks is both the origin of expression (3) and the 
basis tlSJ of our approach to calculating r(q, t). 

Let us now compare the values of the spin at the origin at two dif- 
ferent times rl and r2 where 0 < rj < rz < t: one has to study two random 
walkers starting at the origin at times t - r ,  and t - r ~ .  If  the two walkers 
merge before time t and the new walker ends up at site k o, one has 
So(z~)=So(rz) =Sk0(0). On the contrary, if the two walkers do not meet 
before time t and end up at positions io and J0, then SO(rl)=S,-0(0) and 
So(r2) = Sjo(0). One can repeat this reasoning to compare the value of the 
spin at the origin at N different times 0 < r ~  < r 2 <  . . . r N < t .  One has to 
consider N coalescing random walkers starting from the origin at times 
t -  ru,  t - r u_  ~ ..... t - r~. At time t there is a probabili ty P(m, t) that there 
are exactly m walkers left in the system. Then the probabili ty that So(r~) = 
So(z2) . . . .  S0(rN) is given by 

N 1 
P r o b { S ( r l ) = S ( r 2 )  . . . .  S(rN)} = ~ P(m, t)q.,_, (8) 

t i t =  I 

as when the walkers occupy m sites at time t, the probabili ty that the spins 
of these m sites have the same color is l/q"'-~. Taking the limit N--* ~ and 
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a dense set of times r~, r2 ..... rN between 0 and t, one obtains the probabil-  
ity r(q,  t) that the spin at the origin never flips up to time t. 

The above reasoning is valid for the spin at the origin of an infinite 
chain. It is also valid for other one-dimensional geometries (or would be 
valid for the voter model in higher dimension). It turns out that it is more 
convenient to use a semiinfinite chain (0 ~< i), where the origin is also the 
site at the boundary and is updated according to 

So(t + At) = So(t) with probability 1 - A t 

= S~(t) with probability A t  (9) 

In Section 4, we derive an exact expression for the probabili ty R(q;  t l ,  t2) 
that the spin at the origin of a semiinfinite chain never flips between times 
t~ and t2. The knowledge of R(q;  t~, t 2) leads to the probability r(q,  t) that 
a spin of an infinite chain never flips up to time t, 

r(q,  t) = [R(q; 0, t )]  2 (lO) 

because for an infinite chain, if the spin at the origin never flips, the two 
sides of the origin are completely decoupled and domain walls at the right 
and at the left of the origin move and react with no correlation between the 
right and the left. 

The semiinfinite chain is simpler than the infinite chain because when 
N random walkers start from the origin at times t - - r u < t - - r u _ l - . -  
< t -- ~ on a semiinfinite chain (when a walker is at the origin, it can only 
hop to its right), they remain always in the same order, corresponding to 
their ages: at time t one always has i 3 <~ i2 <~ . . .  iN. This fact makes easier 
the calculation of the probability that no pair (among these N walkers) has 
met until time t: if ci.j is the probability that two walkers (on the semi- 
infinite chain) starting at times t - ri > t -  rj do not meet up to time t, one 
can show that the probability ci,,i2,i3,i , ~ 2 ~  that no pair meets (up to time t) 
among four walkers starting at times t - r~, > t - ri, > t - r; 3 > t - r~, (from 
the origin) is given by 

C~1,~2,i3,i4=Cil,i2Ci3,i4 + Cibi4Ci2 , i3- -Ci l . i3Ci2 , i4  (11) 

and more generally, for no pair to meet among 2n walkers, one finds 

1 
e l")  �9 - ~ E(o')  . .  ( 1 2 )  il 'i2"""t2n-I'i~a 2" �9 n !  Ci~ " Ci~ 
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where the sum runs over all the permutations a of the indices { il ,  i2 ..... iz,}, 
e(a) is the signature of the permutation a, and the matrix cg, j is antisym- 
metrized by defining, for ri > r j, 

c i j=-c j . i<O when i > j  

[note that (11) and (12) are Pfaffians,121~ simply meaning that the sums in 
(11), (12) are over all possible pairings of the indices]. A proof of (11), 
(12) is given in Appendix A. 

As explained in Appendix A, from the d "~, one can calculate the 
probabilities of all the coalescing schemes between N walkers, in particular, 
the probability that N walkers starting at times t - r N <  t--VU--I < . . .  
t - -  r~ become exactly m walkers at time r Moreover as in ( 11 ), (12) all the 
c ~''~ can be expressed in terms of the matrix cij ,  it is sufficient to know this 
matrix c. 

One can calculate the matrix c~,j by the method of images. Consider 
first a single walker on the semiinfinite chain (1), (9) starting at the origin 
at t =0.  The probability p(x, t) of finding this walker on site x at time t 
evolves according to 

and 

dp(x, t) 
dt 

p ( x + l , t ) + p ( x - l , t ) - 2 p ( x , t )  for x > 0  

@(0, t) 
dt =p(1,  t ) - p ( 0 ,  t) 

The solution for the initial condition p(x, O)= d,-.o is 

p(x, t) = dO {cos(x0) + cos[(x  + 1 ) 0] } exp[ - 2 ( 1  - c o s  0) t] (13) 

which becomes in the long-time limit, 

1 X 2 
p(x, t) ~- ~ exp - 4t  

Consider now two walkers starting at the origin at times t - rj < t - r~. 
The probability c~.j that they do not meet up to time t is given by 

ci.y= ~" p(x, r,) p(y, rj)--p(x, rj) p(y, r~) (14) 
O ~ < x ~ <  t, 
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If one uses the long-time expression of p(x, t), one obtains for large r~ 
and vj 

4 
c id -~ -  tan -1 -- 1 (15) 

7~ 

3. THE SEMI INF IN ITE  CHAIN  AT N DIFFERENT 
T I M E S  T 1 , T 2 . . . . .  T N 

In Appendix A we calculate for the case N =  4 the probabilities P(m, t) 
in terms of the 4 x 4  matrix ci.j. This gives for the probability 
A4(vl, r , ,  r3, r4) that So(r1)= So(z_,)= So(r3)= So(r4) 

q - 1  
A4(vj ..... % ) = 1 - ( c l . 2 + c 2 . 3 + c 3 . 4 )  q2 

( q -  1) 2 ,(z) (q-  1)2 
- -CI ,4  q-"""'T~- +t'l,2,3,4 q""""'T~ 

The key to our solution is that we could generalize this expression to an 
arbitrary number N of walkers. Let us define 2 and it by 

2 = q - 1  (16) 

q - 1  
l t -  q2 (17) 

We shall prove that the probability A N ( r l , r  2 ..... rN) that So(r~)= 
So(r_,) . . . .  So(rN) is given by 

A N ( V  1 , V 2 . . . . .  r N )  

N - I  

= 1--1z E cii+, +/tz  Z c~.])+,./.y+ �9 . l 

i =  [ i < j  

--lt 3 ~. c 13) + . . .  
i , i  + l , j . j +  1 , k , k  + 1 

I< . i<k  

{ . . . .  },18, - - ~  ~ / C I , N - - ~ t / 2  . ," , l , i , i + l , N  C l , i . i + l , j , j + l , N  

i i < j  

(note that as long as N is finite, AN is the sum of a finite number of terms 
and is therefore a polynomial in the variable :t). 

To prove that (18) is equivalent to (8), we need to show that the 
weight of the events where the N walkers end up being m aggregates at 
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time t is q' .... in (8). Consider a situation where all the walkers starting at 
times t - r N <  t - r N _ ~  < . . - t - r ~  end up forming m clusters at time t. The 
weight a,,, of such an event in (18) is 

a,,,=l-(m-1)It+ (m-2)(m-3)Ft2-(m-3)(m-4)(m2! 3! - 5 ) u 3 . . .  

-2(  It-(m-3)lt2+ (m-4)(m-5)2! lt3"") (19) 

(The case m = 1 is special and a, = 1). This formula can be understood by 
looking at (18) term by term: if there are m walkers left at time t, then 
there are m - I  pairs i, i +  1 which do not meet, (m-2)(m-3)/2 quad- 
ruples i, i + 1, j, j + 1 which do not meet, and so on. a,, is a polynomial in 
p which can be rewritten in a closed form 

a,,= ~x/~_4~[(l+~/1-41a)"'+'--(!--x/;--4/~) "'+' ] 

1 1 2 

Using (16) and (17), this gives a,,= 1/q .... ~ and therefore completes the 
proof that (18) is the same as (8). 

There are several ways of rewriting (18). One can show (Appendix B) 
that (18) can be written as the square root of a determinant, 

AN(T I ..... r N ) =  
i ~176 / 1 0 0 

0 

1 

0 1 0 

- 1  0 1 0 

o --1 0 1 

+l l  - - i  0 

0 2 

0 

0 

1 

--1 0 I ( c ~ , j )  

~/2 

(21) 

where (ca) is the N x  N matrix the elements of which are c~. Another way 
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of rewriting (21) which will be more convenient in Section 4 to take the 
continuous limit is 

A N ( r  I . . . . .  rN) = (det M) I/2 { 1 + p (cM - t  )2.1 -p(cM-I)N__ I .N 

+ 2,u(cM I ) N , I - - ~ [ J ( c M - I ) I , N  

+p2[2(cM-~)l , i  +(cM-I)N_I .~]  

X [2(cM- t)N.,V + (cM-I)2.N] 

- -p2[A(cM- t)N. t + ( c M -  I)2. t] 

x [2(cM- I)LN + (cM-I )N_  LN] } I/-~ (22) 

where the matrix M is given by 

tt~176176176176 Q O 1 0 0 -- 0 1 0 0 
0 - - 1  0 1 0 

M = + p  (ci. i) 

j --1 1 
1 0 0 0 

This is just a consequence of the fact that for any matrix Q and vectors 
IV,), <w,I, IV_,>, <w21 

det[ Q + I v , ) (  W,I + IV2>< W21] 

=[ (1  + (  W,l M - '  I V , ) ) ( I + ( W 2 I M - '  IV2>) 

- - (  Win] M - '  IV2)( Wzl M -~ IV,)]  det O 

Remark .  There is still another way (see Appendix B) of writing 
AN(r~ ..... rN) in terms of the antisymmetric matrix b defined by 

bij  = -bj.i  = 1 - cij  for 

and A N ( r  ! . . . . .  r N )  becomes l{ 
Au(r , ..... r N ) = ~ - - ~  1+ ~ (q - -1 ) J - ib i j  

i < j 

+pz 

+p3 

i < j  (23) 

y'. ( q -  1)/-k+J-i/,  (z) 
~ i , . j ,k , I  

i < . ] < k  < l  

(q 1) ...... +/-k+i i/,(3) } 
- -  ~ i , j , k , t . m . ~ t  - ~  " " " 

i < . ] < k < l < m < n  

(24) 
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This expression has the same form (but with a different matrix b) as the 
one obtained in ref. 15 for the finite system [see (43) below]. As explained 
in Appendix B, this can be rewritten as 

1 x / d e t ( i + l t A b  ) (25) AN(TI . . . . .  rN) -- q N -  I 

where the matrix b is given in (23) and the antisymmetric matrix A is 
defined by 

A~.j= -Aj.~= - 2  J-~ for i < j (26) 

4. EXACT EXPRESSION OF THE N U M B E R  OF 
PERSISTENT SPINS 

With the above expressions (18L (22) it is possible to take the limit 
( N ~  o~) of a dense set of r~ between two times t~ and t_,. In this con- 
tinuous limit the matrices ci.j and Mi.j become kernels c(t, t'), 

c(t, t ' )= -c(t ' ,  t) 

with c(t, t') > 0 if t < t', and M(t, t'), 

d 
M(t, t') = ~(t - t') + 21t -~ c(t, t') 

The matrix product as well as inversion or exponentiation have obvious 
generalizations in this continuum limit. For example, 

= - dt" t" M2(t, t') M(t, ) M(t", t') 
* l  I 

In this large-N limit, starting from (18), one finds that the probability 
R(q; t~, t2) that the spin at the origin of an infinite chain does not flip 
during the time interval (t~, t_,) is 

c"- d I* 2 (c"- d }2 
R(q; 'l, '2)= l +It j,, ~tc(u, u) au +-~  ~j,, ~c (u ,  u) du 

+lt  2 du ~ c ( u , v ) - ~ c ( u , v ) - c ( u , v )  d ~ C ( U , V )  dv 
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- 2  llc(tl,t2)+l~%(t,,t2) -~c(u,u) du 

1} + lt 2 - C(tl, u ) -~  c(u, t2)--c(u, t2)-~ C(tl, d du +O(/ l  3) 

(27) 

This is an expansion in powers of/t, and therefore, according to (17), is 
valid for q close to 1 or ~ .  

One can also take the N--+ ~ limit in (22). This leads to an expression 
valid for arbitrary t~, t2, and/t: 

R(q; tl,  t2)= {1 +lte(t  I , tl)-Ita(t2, t2)+ 2/re(t2, t l ) -  2/te(t~, t2) 

+/t2(1 - 2 2  ) a(t l, t2) ?(t2, t j ) - / t 2 ( l  - 2 2  ) ?(t l, t I) ?(t2, t2)} i/2 

• exp(�89 tr log M) (28) 

where 

?=cM -I 

This expression can be further simplified by using (C1)-(C3) of 
Appendix C relating the four matrix elements ?(t~, tt), ?(t2, t2), a(t2, t~), 
and g(tt, t2). One then gets 

R(q; t,, t2) = [x/1 -/tO(t2, t2)-f l~/-ItO(t2,  t2)] exP(�89 tr log M) (29) 

Once R(q; t~, t2) is known, r(q, t) for an infinite chain follows through (10). 
So we have an exact expression of r(q, t) in terms of the matrix c(t, t'), 
which is known: 

c(t, t ')= ~ p(x, t) p(y, t ' ) - p ( x ,  t') p(y, t) 
O<~x<~v 

t r log M ~ ( - 2 , l ) " f j ' -  f t,_ d d = - -  d Z l  �9 �9 �9 d r , ,  c ( ' t l ,  "t'2) - c ( ' t ' , , ,  " r l )  
, ,=,  ,, , 7 " ' 5  

(30) 

and 

?(/2, t2) = ( --2/t)" dr1.., dr,, c(t2, r l )  

d d 
r2) (31) 
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5. THE A S Y M P T O T I C S  

When t I and t2 are both  large, one can replace c(r, r ')  in (30) and (31) 
by its asymptot ic  expansion. We have seen from (15) 

where 

g ( z )  =-4 t a n -  ~ - 1 = 1 - -  tan -~ (33) 
7( 7~ 

For  t_, ~> t~ ~> 1, the leading behavior  of (30) is easy to obtain,  

f'2 d d 
d r , - . . J , ,  d r , , ~  c ( r , ,  r 2 ) - - - ~ c ( r , , ,  r l )  

"" du I �9 du,, g ' ( e  ' ' '- ' '2) g ' ( e ' ' - " ' )  
" l o g  II '~log I I 

This has a Toepli tz form and s tandard methods can be used ~22-24~ to 
evaluate its leading behavior: as g ' ( e  ..... ) ~ 0  when l u - v ] - - *  ~ ,  the pre- 
vious integral is dominated  by situations where all the ug are grouped 
around u,.  Therefore,  for large t 2 / t l ,  

~ l o g  . , | l o g  . . . 12 f t2 

dut  - d u ,  g ' ( e" ' - " - ' )  g ' ( e " - " ' )  
~  tl a l o g  tl 

- ,og 

x g ' ( e  "~) g ' ( e ' - )  . , . g ' ( e ' ' )  e ''t +"-'+ ..... "d (v l  + v2 + . . .  v,) 

= log t, 1 . . . . . . .  eik"e"g'(e '') dv 

and this gives the asymptotic  behavior  of (30), 

t r logM___log  t ,  dk log  l+2~ t  eik"e"g ' (e")dv  (34) 
--,-zt2 

[note  that e 'g ' (e" )  is even, so that (34) is real].  
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In Appendix C, we calculate the matrix element ? ( t 2 ,  t2)= (cM-~),,.,,, 
in the limit t2 large, (C5). In that limit this gives 

[ 1 -It?(t,_, t2)] 1/2 _ 2[ -#?(t2,  t2)] 1/2 

~- + 2 ~ - ~ j - 2 - 2 + 2  l~-~-4~tJ 

and using from (16) and (17) that x /1 -41 t  = Iq-21/q, one obtains 

[ 1 -lag(t2, t2)] ~/2 _ 2[ -ltg(t2, t2)] 1/2 

( q Z - 2 q + 2  +q [ q -  21) 1/2 ( ) 
- 2q lq -21  - ( q - I )  q Z - 2 q + 2 - q l q - 2 1  i/2 

2q lq-21 (35) 

One then has to distinguish two cases: 

1. For q < 2 ,  the prefactor (35) has a limit x / / - ~ - q )  when t2--* oo 
and so (29) leads to 

( t ~  ~ 
R(q; tj, t2)~ k ~ /  

where 

O(q) = - - ~  dk log 1 +21t e"*"e'g'(e") dv (36) 
- -  : ~  - -  r  

When the explicit expression (33) of g(-) is used, one recovers (7). In 
deriving (7) from (36), it is useful to remember that 

and 

f ~ e2ik. + .  7( 
2 du 1 + e 2" cosh 7rk - - - z <  

I" ( .2 I _.~dylog 1 coshy  = ~ - - 4  cos - l  

2. For q > 2 ,  as (30) depends only on l t = ( q - 1 ) / q  2, one could 

1 "~. eik,,e,.g,(e,, ) O ( q ) = 2 k o ( I t ) - ~  dklog 1 +21t dv (37) 

believe that the expression (36) of O(q) remains the same under the trans- 
formation q ~  q/(q - 1 ), which leaves It unchanged. However, for q > 2, the 
prefactor (29), (35) vanishes as a power law when t2--' ~ and this gives an 
additional contribution to O(q), 
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where ko(ll is the smallest positive solution 

f 
~ r .  

1 +2#  ek~ ') dv=O (38) 

Before arguing why this is so, let us note that this new expression (37) of 
O(q) leads also (for q > 2 )  to (7) when g(z) is given by (33). In fact, it is 
an exercise in complex analysis to show that (37) is the analytic continua- 
tion of (36) to the range q > 2 :  as 41t ~ 1, two zeros iko and - i k o  of the 
argument of the logarithm in (36) approach the real axis in the plane of the 
complex variable k and the analytic continuation (37) of (36) corresponds 
to a deformation of the path of integration over k to go around these two 
zeros. 

The fact that the prefactor (29), (35) decays like t_~ k~ can be under- 
stood as follows. Let 3 denote the difference between the matrix element 
(cM-t), , t ,_ and its limiting value (C5), 

1 1 - 2/L 

3 = ( c M - I ) " - " -  2~t 21L ~/1 --41t 

Then the prefactor of R(q; t t, t~_) in (29) can be expanded in powers of 3 
and the first term in the expansion is, for q > 2, 

al l  - I t?( t~,  t2) - 2 x / - l t ? ( t 2  t~) - (q - 2)3/-" 3 + 0(62) 
_ , _ 2qlP- 

Thus we need only evaluate the asymptotic expression of 3. For this 
it is convenient to consider the following matrix element: 

From (C4), (C5), when t_, is large, e(t2) goes to zero and the first term 
in its expansion (C3) in powers of 6 is 

rq(q-2)12 e(t2)=L2(-~_i~ j 3 + 0 ( 6 2 )  

The asymptotic expression of 6 can be understood from the integral 
equation satisfied by e(u) 

1 f'-' d e ( u ) = - - [ l - c ( t i , u ) ] - 2 1 L  dr e(r) ~-~ c(r, u) 
2l* 
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Let us consider this equation in the following three regions: (a) u ~  t~, 
(b) tl ~ u ~ t_,, (c) u ~ t_,. 

In region (b), if we neglect the inhomogeneous term, 

f"- d 
e(u) = -2/~ dr e(r) ~rr c(r, u) 

I 

and if we use the fact that (d/dr)c(r ,  u) is nonzero only when r/u is of 
order 1, we find that e(u) can only decay as u -k~ where ko is a solution of 
(38). In fact, (38) has in general several solutions and the most general 
decaying e(u) solution of the homogeneous equation is apriori a sum of 
power laws, but as we are interested in the leading behavior of e(u) for 
large u, we only need to consider the slowest decay given by the smallest 
positive solution of (38). One can check that in region (b), u-k~ (1/2/~) 
[ 1 -  c(t~, u)], so that the inhomogeneous term is really negligible. 

This power-law solution in region (b) joins the solutions in regions (a) 
and (c), where finding e(u) becomes a Wiener-Hopf problem in the 
variable log u. We solved this Wiener-Hopf problem for several simple 
choices of (d/dr) c(r, u) and we found the expected matching with the solu- 
tion of the homogeneous equation in region (b). This convinced us that 

6 ~ e(t2) ~ t~ k~ 

where ko is the smallest positive solution of (38). 

R e m a r k .  We have shown so far that for 1 ~ t~ ~ t2, 

R( q; t , , t2) ~ t ~ ~ 

What we need in (I0) is the decay for large t,_ of R(q; O, t,_). It turns out 
that the condition that t l is large can be relaxed, without changing the 
exponent. This is a consequence of the inequalities 

1 
- R(q; O, t~) R(q; t~, /2) ~ R(q; O, t,_) <<. R(q; t~, t,) 
q 

The right inequality is trivial, whereas the left one can be proved by 
representing each term by coalescing random walkers as in Section 2 and 
by noticing, that more coalescences take place in R(q; O, tz) than in the 
product R(q; O, t~) R(q; t~, t,_). 

R e m a r k .  The difference between the cases q < 2 and q > 2 is a direct 
consequence of the splitting in (18) and (29) between the term proportional 
to 2 and the term independent of 2. In (20), 1/q .... 1= a,, was rewritten as 
a sum of two terms, 

8 2 2 8 5  5-6-18 
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q - 1  1 [ q - l )  .... '] 
2q~2q)[q,,_------7-\---~--1] (39) 

From (8), it follows that R(q; t~, t2) is evaluated as a sum of two terms 

R(q; t,, t2)=2 q-~_q (1R(q; tl, t2)-(q~q l)2 R (q -~;  t,, t2)) 

2q~--q)q-1 ( R ( q ; t l , t 2 ) - R ( q - ~ ; t , , t 2 ) )  (40) 

When the contribution of the second (2-dependent) term is not taken into 
account (as when computing e x p [ t r l o g M / 2 ]  after extraction of the 
2-dependent 2 • 2 matrix) the leading asymptotic behavior of R(q; t~, t~) is 
estimated as a sum of those of R(q; t~, t z) and R(q/(q-1); t~, t2). For  
0 < q  < 2, R(q/(q-1); t t, t2)~ R(q; t~, t2), so that the 2-independent term 
decays like R(q; t~, t2). On the contrary, for q > 2, the 2-independent sum 
behaves asymptotically like R(q/(q- 1); t~, t2)>> R(q; t~, t2). This spurious 
leading behavior is exactly canceled in (40) by the 2-dependent term and 
the exponent O(q) recovered only when the contribution of the 2-dependent 
sum is taken into account. 

Remark.  When tt and t2 are both large, R(q; t t, t2) become a 
scaling function of the ratio t~/t2. This scaling function given by (29) 
is universal, in the sense that it would remain the same if short-range 
correlations were present in the initial condition. In the limit 1 ,~ t~ ,~ t2, 
R(tt, t2; q)~A(t~/t2) ~ and one could compute the prefactor A using 
the theory of Toeplitz determinantsJ 22 24~ 

6. FINITE S Y S T E M S  A N D  FINITE-SIZE SCALING 

When one considers the spin problem (1) for a finite system of size L, 
there is a single domain left in the system after a time t >> L 2, since the size 
of the domains grows like .v/t. The dynamics then stops. Each spin there- 
fore has a finite probability PL(q) to never flip (between t--O and t - -oo) .  
One expects PL(q) to be comparable to the fraction of spins in the infinite 
system which never flip between t = 0 and t ~ L 2, so that 

PL(q) ~ r(q, L 2) ~ L -2o~q~ (41) 

O(q) can therefore be determined from the asymptotics Of pL(q ) for large L. 
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In an earlier letter 1'5~ we obtained the exact expression of PL(q) by 
analyzing the steady state of the ( A + A ~ A )  coalescing random walk 
model on a finite ring with periodic boundary conditions and by using 
finite-size scaling. We recall here this alternative approach. In Section 7, we 
will show that the same expression of Pc(q) can be recovered by a free- 
fermion theory. 

The reaction-diffusion model is defined on a ring of L sites as follows. 
The origin (site 0, which is identical to site L) is always occupied and is a 
source of particles. All other sites can be either occupied or empty. As on 
the infinite line, during every infinitesimal time interval At, each particle 
hops with probability At to its right neighbor and with probability At to 
its left neighbor (and does not move with probability 1 - 2  At); if two par- 
ticles occupy the same site, they instantaneously coagulate (A + A  ~ A); in 
addition, whenever the particle at the origin jumps to one of its neighbors, 
a new particle is instantaneously produced at the origin. 

The connection 1~4"~5~ between the spin problem and the reaction-diffu- 
sion model was recalled in Section 2. The probability PL(q, t) that the spin 
at the origin did not flip between time 0 and t starting from a random 
initial condition is related to the probability of finding m particles at time 
t in the reaction-diffusion model (starting from the configuration where 
only the origin is occupied) through (8), 

L 1 
PL(q, t) = ~ P(m, t) q" '- i  (42) 

t l l  ~ | 

Therefore the probability PL(q) that the spin at the origin never flips (from 
t=O to oo) is related to the probabilities P:,.(m) of finding m particles in 
the steady state of the reaction-diffusion model 

L 1 
pL(q)= ~ P ~ ( m ) q  .... i 

m = | 

In ref. 15 we obtained the following exact expression for the probability 

PL(q): 

pL(q) = 1+ ~ ( q -  1)J-~Bu 
I < ~ i < j < < . L  

+ ~ (q l~J-i+l-kR c21 . ] 
- -  ) u i ,  j , k , I - -  " " " 

I < < . i < j < k  < l ~ L  

(43) 
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where the antisymmetric matrix B~,j is a solution for 1 ~< i < j ~< L of 

Bi+ l,j -t- Bi_ 1j + Bi . j+  1 '1- Bi, j -  1 - 4B~,j = - - 2 ~ i +  l.j  ( 44 )  

The boundary conditions needed to obtain the solution of these equations 
can be taken into account by the conventions Bo, i=  BcL+~ = 0  (note that 
in ref. 15 we had the convention Bi.~= 1, whereas here we choose Bs.~=0; 
as this matrix element appears nowhere, its value has no effect on the 
results). As an illustrative example, for L = 4 ,  the solution of (44) is B, 2= 
B3,4=26/44; Bl.3=B2,4=I6/44; Bi.4=8/44;  B2,3=30/44. Here B (2), 
Bt31,..., B t''l .... are Pfaffians of the matrix B defined as above (11), (12). As 
shown in (B8), (B9) of Appendix B, the sum in (43) can be rewritten as a 
determinant and one has the alternative expression 

1 
PL(q) -- I ~ /de t ( I+  AB) (45) qL-  

where the antisymmetric matrix A is given in (26). 
A derivation of (43) was given in ref. 15. It is based on the fact that 

B~,j for l<~i<j<~L is the steady-state probability that the segment 
{i, i +  1 ..... j - i }  contains no particle, The B~,j obey closed kinetic equa- 
tions_ ~ Generalized such quantities were defined by introducing the 

(n) probabilities Bi~.~2,...,~_.,~,." that there is no particle in any of the discon- 
nected segments { i1 , i1+1 ..... i 2 - 1 } ,  {i3 ..... i4 - 1  } ..... { i2 , , -1  ..... i2,~ - 1  } 

with i~ < i 2 < .. .  < i2, ,. An examination of the kinetic equations that these 
quantities obey then showed that they can be expressed in terms of the Bcj 
and are in fact given by the Pfaffians of the matrix B. 

Having obtained the exact expression (45), it remains to extract O(q) 
from its large-L behavior (41). We could not calculate the determinant in 
(45) for general q. However, working in Fourier space, we found the 
following expression valid for q = 0 (besides the trivial case q = 1): 

x /det ( I  + AB) 

=2--L'L--"/2 I-I ]--[ 
k even k' odd 

2<~k<<.L l~k'~<L 

( 2 ) 
2 - cos[krr/(L + 1 )] - cos[k'rc/(L + 1 )] 

(46) 

(as this expression is used nowhere below, we do not give the derivation). 
For  other values of q, we could only determine its asymptotic behavior for 
large L. As for the semiinfinite system, it is convenient to introduce instead 
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of B the antisymmetric matrix C such that C~,j= 1 -B i .  j for i <j .  As shown 
in Appendix B, (45) can be rewritten as 

Pz.(q) = x/det(I + aC) (47) 

where a is the antisymmetric matrix (B2) with nonzero elements given by 
ai,;+l = -a i+  l.~=lt, ai.L= --aL.l = ;t/~. One can note the similarity of (47) 
with (21) obtained for the semiinfinite system. 

For large L, C,. 4 in (47) becomes a smooth and slowly varying func- 
tion C(x ,y )  of x - - i l L  and y = j / L  except in the two small symmetric 
corners {O<x<e ,  O < y < e }  and { O < l - x < e ,  O < l - y < e }  with fixed 
e ~ 1. There, the large-L limit of C(x, y) for fixed x and y is 

C(x, y) = C(I - y, 1 - x) = f ( x / y )  

= 1 - (4/rt) tan -](x/y) for O < x , y < e  (48) 

It precisely corresponds to the continuum limit expression (32), (33) of the 
semiinfinite system given that distances scale like square roots of time 
separations. We convinced ourselves, by looking at the singular behavior of 
the successive terms in the small-p expansion of (47), that the behavior of 
C(x, y) in these two small corners is responsible for the power-law decay 
of the determinant (47). Thus the large-L behavior of (47) can be obtained 
along lines similar to those explained in Section 5. First, the contribution 
of the rank-two matrix can be explicitly extracted as in (22). This leads us 
to analyze x /de t ( I+p D) ,  where the matrix D is defined by 

D i . j  = C i+  l , j  - C i -  l . j  

DLj=DI . , j=O 

for 2 <. i <<. L - 1  
(49) 

The two corners both give contributions to the power-law decay which do 
not interfere (this can be checked in the small-p expansion) 

det(I+FtD.) ~ [det(I+ltDu)l  <i.j<~L][det(I+ltDij)l <L-j,L-i<,L] (50) 

The two determinants on the r.h.s, of (50) are equal. They can be evaluated 
as in (30) by computing successive powers of the matrix D in the con- 
tinuum limit 

(I  + pD ).,. y = 6(x - y) + 2p O.,.f(x/y) (51) 
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w h e r e f i s  given by (48). This leads to 

log det( I + llD ) 
O(q) = - lira 

L -  ,~_ 2 log L 

'I E f 1 - dk log l + 2 q --, 1 dx eik"e - " f ' ( e  -" )  (52) 
4rE _.-,_ q- _.~ 

which is identical to (36), as g(z) =f(,,/"zz). As explained in Section 5, this 
expression is only valid for 1 < q < 2 (when the contribution coming from 
the prefactor has a nonzero large-L limit). As in Section 5, for q >  2, the 
prefactor gives an extra contribution [much harder to calculate here than 
in Section 5 because of the presence of the two corners and the fact that 
(48) is not valid everywhere in the matr ix]  leading to O(q) given by the 
analytic continuation of (52) outside the range 1 < q < 2. 

7. THE FERMIONIC APPROACH 

In this section we show how (43) can be derived directly using fer- 
mions. Let us consider a q-state Potts model on a ring of L sites evolving 
according to Glauber dynamics. We want to calculate the probabili ty that 
the spin at position 0-= L never flips when the initial condition is random. 
Each site in the initial condition is given one of the q colors at random. 
Because the dynamics is like the dynamics of a voter model (1), one only 
needs to know which are the spins identical to the spin at the origin and 
which are the spins different in the initial condition. 

7.1. The Ising Basis 

Let us denote a configuration by a sequence of + signs if the spin at 
site i is identical to the spin at the origin and - signs if it is different. So 
an initial condition can be represented by a vector with L -  1 Ising spins 
I( + ) + - -  + -  + . . . .  ) (the extra spin in parentheses being the spin at 
the origin, which is of course always +) .  The weight of such a configu- 
ration is (q -1 ) " - /q  L-l ,  where 17 is the number  of - signs [a  + 
corresponds to a spin identical to the spin at the origin and therefore has 
a weight I/q and a - is a spin with a color different from the spin at the 
origin and therefore has a weight (q - 1 )/q]. In other words the initial con- 
dition can be written as 

zIZ[' (1 + q-- 1 a, ) Wo>= \q ~ : I ( + ) + + + . . . + >  
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If [P,)  is the vector which has for components the probabilities of the 2 L-  i 
configurations at time t, given that the spin at the origin has never flipped 
up to time t, the vector [P,)  evolves according to 

where 

with 

and 

d 
dt IP,)  = H IP,)  

H = g l + h l , 2 +  . . .  +hL_2,L_l  + g / _  I 

gl--O-~-+o-~-l; gL_l=O'~- ,+O'~_l--I 

(53) 

(54) 

hi . i+ I = - 1  +~fcr,+ l 

+ �89 + a,~_,)+(I +a,)o'i++ l +~7(I --0"~+ l)"-l- ( I --0" 7) O'i--+l ] 
(55) 

It is easy to check that hi.; + l expresses just the Glauber dynamics, whereas 
gl and g L - l  cause all the events to vanish for which the spin at the origin 
flips at least once. 

The main difference between this Hamiltonian and the usual spin- 
chain Hamiltonians is that it does not conserve the total spin Zf--t  I aT. 

Clearly 

IP,)  = e m l P o )  

and PL(q) is just given by 

L - - I  

pL(q) = l i m ( ( + ) + + + ' ' ' + l  ~ (l+o'+)emlPo) 

as the vector ( ( + ) + + +.- .  + [ l--[ ( 1 + a,. + ) gives the sum of the weights of 
all the configurations. 

Remark. The Hamiltonian H [or  in fact its transpose (D4)]  can 
also be obtained from the reaction-diffusion model of Section 6, as 
explained in Appendix D. 
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7.2. The Basis of the Defects 

The effect of H (zero-temperature Glauber dynamics) is that the num- 
ber of defects + - or - + never increases. This suggests that we define a 
set of spin variables Pi, i =  1 ..... L, which live on the bonds of the previous 
lattice and index the position of these defects. That is, Pl takes the value + 
if the values of the spins at sites i -  1 and i are opposite and - otherwise: 

- 1 ,  if o ' i_ l - - i f  / 
Iti = (56) 

+1,  if a i _ J r  

Periodic boundaries imply that the number of defects is always even. 
In this new basis the initial condition becomes 

IP;> = 2 2 
p Xl < yl  <X2 < y2" ' "  <yp 

+ + . . 0 - + ( 7 +  X O'xl  O'y I �9 .x'p ~ I 

(q - 1 )-"J - '~ 
I 

) (57) 

This expression is rather easy to understand: each time a pair of defects are 
created at positions x / a n d  yj, this corresponds to having all the spins in 
the previous basis becoming negative between these two consecutive defects 
and so the weight is multiplied by (q-1)~-- '+ .  The new Hamiltonian in 
this basis of defects is 

L L - I  

H ' =  - L -  2 a~+  Z ( ~ + a i - + , + ~ / - g + + , + 2 a Z a T + , )  
i ~ l  i = 1  

(58) 

This Hamiltonian shows clearly that the + spins are annihilated by pairs 
and, most importantly, cannot be created. Thus this Hamiltonian has a tri- 
angular character, which is a major simplification. 

One can also check that all the events where a defect at site 1 hops to 
its left or one at site L -  1 hops to its right have zero weight. 

In this new basis the probabilities of the configurations of the defects 
are given as before by 

]P;)  = e " "  IP~) 

L 

pL(q)= lim ( [ I I  (1 +ty,.-)e n' '  IP•) 
i = l  

and 
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7.3. The Fermions 

We can finally transform the Hamiltonian into a fermionic Hamiltonian 
by use of a Jordan-Wigner transformation. We define fermionic creation 
and annihilation operators as follows: 

a + = ( _ _ ) i - - I  O'~ " ' "  O'~__10" ? 

(59) 
ai= ( - ) ' - '  G"" a,_,a7 

Substituting these operators in (58) gives the following Hamiltonian: 

L L - - 1  

H"=-2  E a~-a,+ Z (a+a,+,+a++,a,--2a,a,+,) 
i = 1  / = 1  

Let us define the vacuum IO), which we identify with the 
I ) in the basis of the defects, by 

a~ 10) = 0  Vi 

and ( 0 1 0 ) = l .  The vector 
operators, 

(60) 

state 

I 

(q l ) : " - " v  a_,., a_ + + + I0> . . . .  a.,> ayp 
Xl < Vl < - x 2 <  v~-.-  < . ' .  . _  Ip "~ [ 

(61) 

One can perform a canonical transformation to eliminate the annihilating 
terms a~a~+ ~ in (60). For this, we define a set of annihilation and creation 
operators 

b i = a i 
(62) 

b? = a? - Z & / ' J  
. j# i  

where Bi,  j =  -Bj.~ in order for (62) to define a canonical transformation. 
The matrix B~,j is defined for 1 ~< i, j ~< L and by convention we set Bo.~ = 
B~,c+~ =0.  Expressing (60) in terms of the b,., b~, we can eliminate the 
annihilating terms provided the Bg, j obey 

4 B i l j - B i _ l . j - B i + l . j - B i . j _  l -B i ,  j+] =26~+1,j Vi<j (63) 

which is identical to (44). The Hamiltonian (60) becomes 

L L - - I  

H"= -2 ~ b+bi+ ~ (b+bi+,+bL~bl) (64) 
i = 1  i = l  

IP~) becomes, in terms of the fermionic 
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The right and left eigenvectors of (60) with zero eigenvalue are, respec- 
tively, 

I0) and (0[ exp ~ Bida./a i (65) 
i < j  

As 

and 

one obtains 

pL(q) = lim <Ol (1 + a L ) . - . ( 1  + a , ) e  m' IP'~) 
l ~ o c  

lim e x p ( t H ' ) =  10><01 exp ~ Buaja i 

PL(q) = y" (q - 1 )-'v-.w 
XI <:  Yl  "< N2 < .V2 " " " < .Pp | 

i < j  

Expanding the exponential, one ends up with (43). 

(66) 

8. CONCLUSION 

In this paper we have derived an exact expression, t~~ (29)-(31) valid at 
all times t for the probability r(q, t) that a spin never flips up to time t. This 
exact expression was complicated enough to make the calculation of the 
asymptotics and the determination of O(q) rather difficult. We have 
recovered an expression identical to the one obtained in our previous 
work, ~sl where we used finite-size scaling arguments. 

Surprisingly, in our approach, we had to separate the cases q < 2 and 
q > 2  and we obtained two different expressions (36) and (37) for 0(q), 
which turn out to be the analytic continuations of each other. This 
probably means that there are simpler ways of rewriting our expression for 
r(q, t) where all the cases can be treated in the same manner. Unfor- 
tunately, we did not find these simpler expressions. 

As r(q, t) is known for all times t, one could try to extract other infor- 
mations, ~29~ in particular, the amplitude in front of the power law I -~  o r  

other information on the reaction-diffusion problem in the presence of a 
fixed s o u r c e J  3~ ) 

The approach used in this paper can be extended to calculate exactly 
the distribution of domain sizes for the zero-temperature dynamics of the 
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1D Potts model, t32~ Also it seems possible ~33~ to obtain some exact results 
on related reaction-diffusion models, such as the case of two species A and 
B with different diffusion constantsJ 34-361 

One can wonder whether, for the simple 1D growth problem studied 
here, complicated exponents other than O(q) could be defined and if the 
approach followed here could be of any use in calculating them. 

Lastly, several unanswered questions remain on the extension to 
higher dimension: What  is the upper critical dimension for 0(q)? How can 
one measure the exponent O(q) at finite temperature in d >  17 What  kind 
of approximate method can one imagine to predict 0(q)? 

APPENDIX A 

In this appendix, we calculate the probability that, on the semiinfinite 
chain, 2n walkers starting at the origin at times t - r ~ ,  t - r _ ,  ..... t - r z , ,  do 
not meet up to time t. 

The first part follows ref. 21. I fp (x ,  t) is the probability that a walker 
starting at the origin at t = 0 ends up at site x at time t [the expression of 
p(x, t) is given in (13) at the end of Sect ion2] ,  then the probability 
ci,~"~,i,_.....~,~, that no pair has met up to time t is given by 

c~ ''1. = ~. a (x~ ,  x . . . . . .  x . , , ;  r~ r . . . . . .  r2, , )  
tl ,t2,...,12n - - , _ 

0 ~ N  l ~ x  2 ~ " ." X2n 

where 

p(XI, l"1) p(X2, rl)  "'" p(x2,,, rl)  

A ( x 1 ,  x2  ..... x2n;  r l ,  "ca ..... r2" ) = p(xl.,. "C2) p ( X 2 . ,  l"2) "'" p(x2, [ ,  r2)  

I P(Xi, r2,,) P ( X 2 ,  r2,,) . . .  p ( x 2 , , ,  r2,,) 

This is because the walkers which have not met remain in the same order 
and therefore can be treated as noninteracting fermions. 

If  Q(x, t) is defined by 

Q(x, t)= ~ p(y, t) 
y > ~ x  

one finds b'y summing over the positions of the even walkers and by sim- 
plifying the determinant that 

C(n} ~- 
i l . i2 . . . . . i2n  Z A * ( X I , X 3  ..... "X'2n-l '  r1 , l "2  ..... T2,,) 

o~xl  ~x3~ .-.x~l_ I 

where 
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~ * ( X l ,  X 3 , ' " ,  X2n- -  I ; ~1 ,  ~ 2 , ' " ,  ~2n) 

p ( x , , r l )  Q ( x , , r l )  - "  

p ( x l , r 2 )  Q(x l , r2 )  - - "  

p(xl ,r2, , )  Q(Xl,r2 , )  --" 

p(x2,,-l ,  rl)  Q(x2,,_l, r l )  

p(x2._  1, r l)  Q(x2,,_ i, r2) 

p(x2,,_l, r2,,) Q(x2._ 1, r2.) 

Under this form, the determinant A* is a symmetric function of the coor- 
dinates x l ,  x3 ..... x2,,- i and one can write 

C O  0 . 1 

O~<Xl 0 ~< .x'3 0 ~<x~-I  

Then by expanding the determinant, one ends up (see Appendix 7 of 
ref. 21 ) with the expression (12) for the c t'l. 

It is worth noticing that the c ~''~ give all the meeting probabilities 
between the walks. For  example, if one considers four walks and if ci.j is 
the probability that the walks starting at times t - zj < t - zi have not met 
up to time t, one has 

1]/1234 ~--" 1 - c1, 4 

I]/123.4 ~ c i , 4  - c i , 3  

q,12.34 = c•.3 + c2,4 + c , . 2  - c _ , 3 -  c 3 . ,  

1~1,234 ~ CI,4 - -  C2,4 
(A1) 

.{2)  
12,3,4 = C2,3 "Jr C3,4 - -  C 2 , 4  - - ~ 1 , 2 , 3 , 4  

I]/1,23,4 = CI,3 "[- C 2 , 4  - -  C2,3 - -  CI,4 

_ _  p ( 2 )  
~ll,2,34-'~C1,2-~C2,3--CI,3 ~1,2,3,4 

_ _  r,(2) 
I]/1,2,3,4 - -  " 1,2,3,4 

where I]/12,3,4 is the probability that walkers 1 and 2 have met but walker 
3 has neither met 2 nor 4 and similar definitions hold for the other ~. It 
is easy to check the validity of (A1): for example, 

el, 2 = I//1,234 "[- I/t 1,2,34 "Jf" ~4 1,23.4 "[- I//1,2,3,4 

CI, 3 = I/t 1,234 "[- ~t 12,34 -]- I]/1,23,4 -[- I//1,2,34 "4- I//12,3,4 -'[- I/t 1,2,3, 4 

This example shows that once the c c') are known, the probability 
P(m, t) of finding m walkers at time t can be determined. In the case of four 
walks one finds 
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P( 1, t) = I//1234 = 1 - Cl. 4 

e(2, t) = ~ 123,4 --I- I//12.34 --I- I/,/1,234 : 2C1. 4 - -  e l ,  2 - -  C 2 ,  3 - -  C3, 4 -'1- C(12) 3,4 

P(3, t) = r 12,3,4 -I- [/J 1,23,4 + i/J 1 , 2 , 3 4 :  Cl ,2 ...I- c 2 ,  3 . J i -  c 3 ,  4 - Cl, 4 - 2C(12),3.4 

P(4, t) = O 1.2.3.4 = c',2~.3.4 

More generally, if one has N walkers, there are 2 N- ~ possible ~b, and 
N ( N - 1 ) / 2  elements ci.j, N ( N - 1 ) ( N -  2 ) ( N -  3)/24 elements .~2~ t~ i , j , k . l ~  . . . .  

There are therefore all together 2 N- ~ - 1 parameters c which determine all 
the ~, (there is one more O than c, which is fixed by the fact that the sum 
of all the O is 1). 

A P P E N D I X  B 

In this appendix, we show how sums such as (18), (24), and (43) can 
be expressed as determinants. A convenient way is provided by the 
following identity: given two antisymmetric N x N matrices a and c, one 
has 

det(I+ac) = [  1 - ~ ai, yci, j-}- ~ nO-�91 ~12} -- ~ i . j , k ,  l C  i ,  j , k , l - 1  - " . . 

i < j  i < j < k < l  

+ ( - 1 ) "  ~ a ~"~ cl"' t,i,_, + . . . ]2  
- -  i l , i 2  , . . . ,  i ~  - I , i 2 n  - -  i l , i 2  , . . . .  i 2 n  - 

il < i 2 <  "'" < i ~  

(B1) 

where ai, ~''~,i2,,..,i2"_ i.t~, and c~i'.)i2.....i,,_,.iu are the Pfaffians of the matrices a and 
c defined in Eqs. (11) and (12). Before giving a proof of (BI), we explain 
how various relations used in the main text follow from it. 

B1. Equivalence Between  (18) and (21) 

Let us first choose a, 

a =l t  

0 1 

- 1  0 

0 - 1  

0 

0 

- 2  0 

o o )~\ 
1 0 0 

0 1 0 

0 

1 

- 1  0 

(B2) 
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Of  all the possible contract ions  contr ibut ing to the Pfaffian of  order  17, only 
two give a nonvanish ing  result. Therefore  

a~il.~2....,i2n-, ,i2,, = ~ ln(~il + ' . i2"'" 6i2n-I+ l.iD, 

"{- 2 6 i l .  i 6 i 2 +  1 , i3 ' ""  6i2n-2 + l,i•,-lai2,,.N ) (B3) 

So, with the choice (B2) for a, (B1) simply becomes 

N - I  

det(I+ac)= 1 - 1 t  ~ C s . i + l + / l - ' ~ ,  ~.i+t,j.j+l'~2~ _ . . .  
i= 1 i<.i 

- - 2  l l C I , N - - , t t 2 E  (. "12~ I.i.i+ l.X + "'" (B4) 
- i 

and as (18) is positive, it can be rewrit ten as (21). 

B2. Derivation of (24), (25) 

It is also possible to express AN(r  ~ ..... rN) using instead of  c the 
ant isymmetr ic  matr ix  b such that  ci.j = 1 - bi.j for i < j. Tha t  is, c = b' - b 
with b'<i = - b ) . i =  1 for i < j. The  de te rminant  can be rewrit ten as 

d e t [ l + a c ]  = d e t [ I + a b ' - a b ]  

= d e t [ I +  ab'] d e t [ - l -  (I+ ab')-'  ab] (B5) 

All the Pfaffians of  b' are 1. Therefore,  using (B1), one finds 

det[I+ab'] =I 1 - ( N -  1)lt+ ( N - 2 ) ( N - 3 )  2 l l2  q- "'" 

- - 2 { 1 - - ( N - - 2 ) l t +  . . .} (B6) 

and this gives, using (19), (20), 

~/det[ I + ab'] =q-lN-1) (B7) 

One can also check that  - ( I + a b ' ) - l a  is equal to the ant i symmetr ic  
matr ix  A such that  

Ai ,  j = __~ j - - i  
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for i < j (for example, by multiplying A on the left by I + ab' ). Finally, (B5) 
gives the alternative expression of A N(r I ..... TN) as 

AN(r  I ..... rN)- -  1 x / de t ( I  + Ab ) (B8) qN--I 

This determinant can also be expanded as a sum of Pfaffians of the matrix 
b. Since A~.j is of the form - f ( j ) / f ( i ) ,  one has a simple expression for the 
Pfaffian to order 17: 

AII'.~,......,,.,,_,.,~ ' = A, , . , , . . .  A,,~,_ ,.,,~, = ( - 1)" 2'- i ,  +,.,+ . . . .  ,_,,_, +,~,, 

and using the identity (B1), one obtains 

,{ AN(r 1 ..... r N ) = c - ~ - 2 - -  i 1 +  ~ ( q - - 1 ) J - i b i d  
i< j  

3 
I ~l--k+j-- i  (2)  . I -  + ~. ( q - - , ,  bid, k , t -  . . .  ) i < j < k < l  

This completes the proof that (18), (21), (24), and (25) are equivalent. 

(B9) 

B3. Proof of (B1) 

Equation (B1) can be obtained by computing in two ways det M, 
where M is the 2N • 2N antisymmetric matrix 

On the one hand, one can show that det M = de t ( I+  ac) by computing, for 
example, the determinant on both sides of 

- I  c i O c a )  (B l l )  (/ c)(_i 
On the other hand, since M is antisymmetric, its determinant is the square 
of a Pfaffian~2~: 

1: det M =  ~ e(~) Mi.,,,.i.,2,... Mi.,2x_,, io~2,,., (BI2) 
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Ordering the terms of the r.h.s, of (B12) in increasing powers of the matrix 
elements of a and c gives 

r 
det M = [  1 ~, ai, jci,j + ~ a~ ~2, - -  a L j ,  k ,  i d i, j , k . l - J F  . . .  

k i < j  i < j < k < l  

], +(-1)" 2 a~i',~,....,i,~,_,,i,_c~i;'.~,.,....i~_,,i,_+... (B13) 
i l  < i 2 <  "-- < i 2 n  

[the first term corresponds to all permutations where i is paired with i + N 
for all indices 1 ~< i <~ N, the second to permutations where the same is true 
except for one couple of indices i, j ( 1 <~ i ~< N, 1 ~< j ~< N), where instead i 
is paired with j and i + N is paired with j + N,... ]. 

A P P E N D I X  C 

Consider a matrix c(t, t') having the following properties: 

c(t, t') = -c( t ' ,  t) > 0 if t < t' 

c(t, t') --, 1 for t ' ~  

c(t, t ) = 0  

The first property implies that 

d d 
dt c(rl ,  r2) = - ~7 c(r2, rl)  

(d/dt is the derivative with respect to the first variable and d/dt' is the 
derivative with respect to the second variable). Let us define 

u, ,=f~dr~f~idr2 

v,,=f, l d r~ f~dr2  

x,,=~,idr~f~idr2 

Y,, = I~i dr, I~ dr2 

�9 "" dr, c(a,z  I ) c ( r l , r , _ ) . . . ~ c ( r , , b )  
t 

i b d d .." dv,,c(b, r l ) ~ c ( r l ,  r z ) . . . ~ c ( r , , , b )  
1 

�9 .. dr, c(a, r l ) -~c ( r , , r 2 ) . . . -~ i c ( r , , a  ) 

yo " . 
"'" bdr,  c(b, r l ) -~c ( r l ,  r z ) . . . ~ c ( r , , , a )  
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[for n = 0 ,  we define u o =  - y o = c ( a ,  b) and v o = x o = O  ]. One can show, 
using integration by parts, that 

U l  ~ --Yl 

uz = --Y2 + Xl Uo -- yOVl 

n - -  1 

U , , = - - y , , q -  ~ ( X i U , , _ i _ l - - v i y , , _ i _ l )  
i ~ l  

One can also show that 

vl = �89 a, b ) 

v 2 = c(a, b) ul  

1 9 2 
v 3 = c(a, b) u2 + ~_(u~ - v I ) 

] v , , = c ( a , b )  u , ,_ l - l - �89  ( u i u , , _ ~ _ | - v i v n _ i _ l )  
i l 

Similarly, one can show that 

x~ = -�89 b) 

x2 = c(a, b) Yl  

] x , , = c ( a , b ) y , , _ l + � 8 9  ( X i X , , - i - l - - Y i Y , , - i - l )  
i = l  

Clearly these recursion relations imply that 

y,, = - u , , ;  x,, = --v,, 

so that the knowledge of the sequence u,, determines all the rest. 
The matrix elements 

(cM-I),,,b= ~ (--2r 
t! ~ D  

(cM-l)o,b = .~ (--2,U)" v,, 

822'85,5.6-19 
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(cM-1),,,,, = ~ ( -21t)" x,, 
n = O  

( c M - I ) b . . =  ~ (--2/z)"y.  
n = 0  

The above relations imply that 

(cM-I)~,b = --(cM-l)b.~ (C1) 

(cM-l)b.b= --(cM-I)., .  (C2) 

(cM-l)b,b=t~{ [ (cM-l )b,b]Z__ [ (cM-I ),,.b]-} (c3) 

So, if (cM-l)a.b is known, the other three matrix elements follow easily. 

01. Asymptotics 

When b is large (with a fixed so that the ratio b/a is large), (d/dt) c(r, r') 
is nonzero only when the ratio r/r' is of order 1. Consequently, u,, can be 
replaced by 

u,,= dzl dr._... ~c (r l ,  r2). . .~c(r, , ,b)  
t 

because b/r,, is of order 1, r,,/%_ ~ is of order 1, and so on, so that b/rl is 
of order 1 and so c(a, q )  ~ 1. This implies that 

and therefore 

12n ~ U n -  1 - -  l ' ln  - -  1 

(cM-l)..b "" 1 - -2 / t [ (cM -1 )b.b-- (cM-l)a.b] 

and this together with the previous relations (C1)-(C3) implies that for 
b/a --* oo, 

1 
(cM-I)~.b= --(cM-I)b.. -- - -  (C4) 

~/1 -4/ ,  

1 1 - 2p 
(cM-l)b'b= --(cM-l)"'"--2ll 21t ~/1 --4Ft (C5) 
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APPENDIX D 

In this appendix we show how the reaction-diffusion problem dis- 
cussed in Section 6 of coalescing particles on a finite system of L sites with 
a fixed source at the origin ( 0 = L )  can be reduced to the Hamiltonian 
(53)-(55). 

Let us call P,(x~  ..... x . . . .  ] ) = P , ( { X m } )  the probability of finding, at 
time t, particles at positions 1 ~< x, < --- < x .... ,~< L -  1. All the other sites 
are empty except the source at position 0 ( =  L), which is always occupied, 
and the total number of particles m can take all the possible values from 
1 to L. The P , ( { x " ' } )  represent exclusive probabilities; thus they are 
positive and their sum is one: Y'-,,,~{.,"I P , ( { x " ' } ) =  1. We consider the 
state 

I P , ) = ~  ~ P , ( { x " ' } ) l ( + ) - + - - + . . . )  (D1 
, .  { .~*,} 

where each occupied site corresponds to a + and each empty site to a - 
The + spin in parentheses represents the site 0, which is always occupied. 

The time evolution of I P , )  is given by 

d 
at IP,) --= H I P , )  (D2) 

with H is a spin-chain Hamiltonian 

with 

and 

so that 

H = g l + h k 2 +  " "  +hL-2.Jr_-I + g L - t  

+ +a~-  1 1 g i = a ~ - + a ~ - - l ;  g L _ l = O ' L _ l  _ --  

hi.i+ I = G t T - o / + +  i - I - o - + o / - 4 . 1 - - I - / G T o ; +  1 

_ _ l  : ] -- _ _ [  
+ +'<<~7+< + �89 + _+'o7+, ~_<',- - ~_<~<+, 

+ + o ~ _ ~  H =  - L  + a ~  + a  I + ( 7 1 _  , 

L - - 2  

++_ Y'+ 2a;-,~?-+, +207a,7+, +a , -a?+,  +,*,aT+, 
i = l  

(D3) 

+ a,7 + a/-+ 1 - a~ - e~+, (D4) 
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D1. A Change of Basis 

Let us make the following transformation on H: 

where 

H '  = U -  I H U  

L - - I  L - - I  

U--- l-I (1-a,.+); U-I--  I~ (1 +a,. +) (D5) 
i = l  i ~ l  

In the new basis, the steady state is given by I P ' ) = U  -~ [P.~.) and 
satisfies 

H'  IP~) = 0  

The new Hamiltonian H' takes the form 

where 

and 

H '  =g'j + h'l.2 + -.. + h 'L -2 . c - ,  + g'L-~ 

g ' t = a ~ - + a ~ - - l ;  g~._l=a~- l + a ~ _ l - - 1  

(D6) 

(D7) 

h;.,+, = -1  + �89 + ~ ,a / -+ , -  a/+~,+,- ~,~/++, 

+ 2a~crj+ ~ + ~ .  +~rT+ t + a  + + a++ t] (D8) 

This is, up to a transposition, the Hamiltonian (53)-(55) of Section 7. 
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